
Database Design Process

� there are six stages in the design of a database:

1. requirement analysis

2. conceptual database design

3. choice of the DBMS

4. data model mapping

5. physical design

6. implementation

� not necessarily strictly sequential

– feedback loops exist, i.e. may need to revisit earlier stages during a

later stage



D
M

B
S 

sp
ec

if
ic

D
B

M
S 

in
de

pe
nd

en
t

Physical Design

Logical Design

Conceptual Design



1. Requirement Collection and Analysis

� Purpose: to document the data requirements of the users

– functional requirements are the operations that will be applied to the

database, including queries and update

� the specification will then be used as the basis for the design of the

database

� typical activities:

– identification of application areas and user groups

– analysis of existing documentation of application areas, e.g. policy

documents, forms, reports, organisation charts

– analysis of current operating environments and the planned use of the

information, e.g. information flow, types of transactions, frequency of

transaction types

– responses to user questionnaires are analysed



... in summary:

� start from a description of the requirements which is:

– poorly structured,

– heterogeneous

– informal

� and use a technique to transform that into a specification of the database

requirements which is:

– formal

– homogeneous

– consistent

– complete



2. Conceptual Design

� two parallel activities

1. schema design

– examines the data requirements of the database resulting from the

analysis (phase 1) and produces a conceptual schema in a

DBMS-independent high level data model

2. transaction design

– examines the database applications whose requirements were

analysed in phase 1 and produces high level specifications for these

transactions



2.1. Conceptual Schema Design

� Purpose: to produce a conceptual schema of the database

– expressed using concepts of the high level data model

� not including implementational details (has to be understood by

non-technical users)

� but detailed in terms of the “objects” of the domain the database

will represent

� independent of the DBMS to be used (no relational DB-oriented notions!)

� cannot be used directly to implement the database

� design is made in terms of a semantic or conceptual data model



� the goal is to achieve understanding of database structure, semantics,

interrelationships and constraints

� need to be expressed in a “language” which offers:

– expressiveness: able to distinguish between different types of data,

relationships and constraints

– simplicity: easy for non-specialist users to understand and use

concepts

– minimality: small number of basic concepts that are distinct and do

not overlap

– diagrammatic representation: for ease of presentation; it should

therefore be easy to interpret

– formality: must represent a formal, unambiguous specification of the

data

� some of these requirements sometimes conflict

� most popular data model used is the Entity-Relationship (ER) model



2.2. Transaction Design

� Purpose: to produce a design of the transactions, that will run on the

database

1. retrieval: retrieve data for display or as part of a report

2. update: enter new data or amend existing data

3. mixed: more complex applications may do both retrieval and update

� Why?

– need to be sure to include in the conceptual schema all information

required by transactions

– relative importance and frequency of use of transactions will influence

physical database design

� ... the software needs to be designed as well as the data!



3. Choosing a DBMS

� Purpose: establish which is the best framework for implementing the

produced schema:

– type of DBMS (relational, network, deductive, ObjectOriented, ...)

– user and programmer interfaces

– types of query languages

� choice made on the basis of technical factors

– the DBMS has to support the required tasks

� of economic factors

– software acquisition/maintenance, hardware acquisition,

creation/conversion, training of staff

� and of organisational factors:

– platforms supported, availability of vendor services



4. Logical Design

� Purpose: to transform the generic, DBMS independent conceptual

schema in the data model of the chosen DBMS (data model mapping)

� two stages:

1. system independent mapping: no consideration of any specific

characteristics that may apply to the specific DBMS package

2. tailoring to DBMS: different DBMSs may implement the same data

model in slightly different ways

� result is a set of DDL statements in the language of the chosen DBMS

– some CASE tools generate DDL statements from a conceptual design



5. Physical Design

� Purpose: to choose the specific storage structures and access paths for the

database files

– attention to performances

� some relevant criteria:

– response time: may want to minimise database access time for data

items referenced by frequently used transactions

– space utilisation: less frequently used data and queries may be

archived

– transaction throughput: average number of transactions that can be

processed per minute



6. Implementation

� Purpose: to create the database

� compile and execute DDL statements

� populate the database

– manually/automatically (may need to convert data from a previous

format)

� implement application programs (transactions)

– programs are written with embedded DML statements

� operational phase may begin



Entity-Relationship Model

� model to express the conceptual schema of the database

� originally proposed in 1976 by Peter Chen on the ACM Transactions on

Database Systems journal

– proposed as a means to unify the network and relational DB models

� many theoretical extensions and practical applications

– Enhanced Entity Relationship (EER) Model

� used routinely for system analysis and design

– simple enough to learn and understand the basic concepts

– powerful enough to be used in the development of complex

applications

� conceptual designs using the ER model are called ER schemas



ER Model

� The ER model describes data in terms of three primitive notions:

1. entities

2. attributes

3. relationships

� an entity is a “thing”, which can be distinctly identified

– e.g. a physical thing: a person, a car, a wire

– e.g. an abstract thing: a university course, an event, a job

� an attribute is a property of an entity

– e.g. a person has an age, a car has a colour

� a relationship is an association among entities

– e.g. “a person owns a car” is an association between the entities

person and car



Entities

� Entities are the “objects” the database has to store information about

� need to distinguish between

– entities the database contains information about currently

– world of possible entities the database might contain information

about

� the conceptual schema has to capture the changing nature of data

– need to make decisions based on the world of possible entities, e.g.

the entity class or type

– the entity class is an abstract description of some set of objects

– data to be actually stored form instances of such abstract description



Attributes

� all instances of an entity class share some common properties named

attributes of the entity class

– e.g. attributes of the “employee” class might include name, age,

address, salary etc.

� the ER model explicitly classifies attributes according to three criteria:

1. complexity

2. cardinality

3. primitiveness



� composite vs simple (atomic)

– composite attributes have an overall significance (e.g. an address) but can be subdivided

into more basic attributes with independent meaning (city, postal code etc.)

– simple attributes are indivisible (e.g. age)

� single-valued vs multi-valued

– most attributes can have only one single value for a particular istance (e.g. a person can

only have one date of birth)

– some attributes can have one or more values for the same instance (e.g. a car model’s

colours, a person’s names)

� primitive vs derived

– some attributes can be derived from other attributes of the same entity, e.g. age

(derived) from birth date (primitive)

– or can be derived from properties of other entities (e.g. number of lecturers of a

department)



Key Attributes

� an important feature of an entity type is the key or uniqueness constraint

on attributes

� an entity type might have an attribute whose values are distinct for each

individual entry

� such attribute is called key attribute and its value can be used to identify

each entity uniquely

� sometimes, several attributes together can form a key, meaning that the

combination of them must be distinct for each individual entity

� some entity types have more than one key attribute, for example both

National Insurance Number and Staff Number are valid keys for the entity

type “lecturer”



Relationships

� a relationship type defines an association among entity types

� a relationship has a degree that is the number of participating entity types,

for example:

– binary relationships (degree two): e.g. a person owns a car

– ternary relationships (degree three): e.g. a lecturer teaches a course to

a student

� relationship types can also have attributes (e.g. StartDate attribute on a

supervises relationship)



� participating entities might have a role name in the relationship

– usually the entity type name (e.g. in a ternary teaches relationships,

roles are lecturer, course and student)

– may be needed when entities are related by more than relationship

(e.g. in an additional relationship supervises, a lecturer has role

supervisor of a student having role supervisee)

– needed also in recursive relationships (e.g. a student may have role

demonstrator in the relationship demonstrate for with other students)



Structural Constraints on Relationships

� structural constraints limit the possible combinations of entities that can

participate in a relationship instance:

– cardinality ratio specifies the number of relationship instances that an

entity can participate in (one-to-one, one-to-many, many-to-many)

– participation constraint specifies whether the existence of an entity
depends on it being in the relationship:

� a total participation constraint, or existence dependency, specifies that an entity can

only exist if it participates in the specified relationship (e.g. every lecturer must work

in a specified department)

� partial participation constraint specifies there may exist an entity which does not

participate in the relationship (e.g. not all lecturers supervise students)



Weak Entity Types

� these are entity types which cannot exist in isolation

� instances are identified because they “belong” to specific entities from
another entity type, known as identifying owner

– for instance, the content of a lecture theatre (white boards, desks, etc.) cannot typically

be identified as such

– the lecture theatre is their identifying owner, so we can talk about “the desk which is in
RB8”

� the relationship type that relates the weak entity to its owner is the weak
entity’s identifying relationship

– in the example above, the is in relationship

� weak entity types might have a partial key, to distinguish one weak entity
from other weak entities related to the same owner

– for example “the desk 1 (or 2, 3 etc.) which is in RB8”



ER Diagrams

� entity types are represented as boxes

� relationship types are represented as diamonds connected with each

participating entity types

� attributes are shown as ovals connected to the relevant entity or relation

type (key attributes are underlined)

WORKS_IN

DEPARTMENT

LECTURER

Name Staff Number



� component attributes are connected to the composite attribute

� multivalued attributes are indicated by double ovals

� derived attributes are indicated by dashed lines

LECTURER

Name

Age
Birth Date

SurnameFirstName

MiddleNames



� the cardinality of the relationship is written by the line

� total participation of an entity E in a relationship R is indicated by a

double line between E and R

� role names are attached to relationship connectors

DEPARTMENT

WORKS FOR

LECTURER

TEACHES

COURSE

SUPERVISES

STUDENT

N

N

N

N
N

supervisor

supervisee

1

N



� weak entities are indicated by double boxed rectangles

� identifying relationship types are indicated by double boxed diamonds

� partial keys are indicated with a dashed underline

DESK

LECTURE THEATRE

IS IN

Number

N

1



Example: Books

Name

AuthorID

Surname

Nationality

Year of Birth

Name

ISBN

Publication Year

Title
AUTHOR

WRITES BOOK

WINSPRIZE

N

N

N

N



Example: University

NameDEPARTMENT

WORKS FOR

LECTURER

TEACHES

SUPERVISES

STUDENT

COURSE

Name

Surname

YearOfBirth

StudentIDAge

Age at Matriculation

Nationality

Matriculation Year

LecturerID

Name

Surname

Nationality

N

N

N

supervisee

Code

Office

N

supervisor

N

1

N



Example: Championship

TEAM
NameContinent

City

Name

STADIUM

Capacity
N

NN

1st team 2nd team

Date
Time

MATCH



Example: Championship - 2

MATCH

PLAY

TEAM
NameContinent

City

Name

STADIUM

Capacity

1

Date
Time

N

NN

1st team 2nd team


