
Network Analysis of a Large Scale Open Source
Project

Alma Oručević-Alagić, Martin Höst
Department of Computer Science, Lund University, Sweden

Email: (alma, martin.host)@cs.lth.se

Abstract—One way to understand the structure of an open
source community is by applying network analysis to its source
code repositories. In this paper a new method for the analysis
of committers’ networks is proposed. The method deals with
directed and weighted committers’ networks. The method is then
applied to the Android open source project. The analysis results
show how a large, company sponsored, and industry backed open
source project, i.e. an open source project with the majority of the
community members affiliated with the industry, is structured.
In particular, it shows that the involvement of an entire industry
eco system within a company sponsored open source project does
not imply more equal distribution of the participating community
members’ influences in terms of committers’ networks.

I. INTRODUCTION

Open source software (OSS) has been growing in impor-
tance and affecting the way companies develop their products
and services [1], plan their business strategy, and compete [2].

There have been many studies conducted on open source
projects by analyzing source code change logs and mailing
list archives in order to understand the underlying structure
and behavior of the community. The studies focused either on
some individual open source projects [3], or on an entire portal
hosting tens of thousands of open source projects [4].

Android was initially developed as proprietary software by
the Android corporation. In 2005, Google Inc. bought Android
[5] and open sourced the operating system in 2007 [6]. At
the same time, Google also founded the open handset alliance
[6]. The open handset alliance is a consortium of over eighty
globally leading companies in market segments of mobile
operators, handset manufacturers, semiconductors, software,
and commercialization companies. The companies contribute
to the development of the Android and deliver devices and
services built around the Android operating system. Companies
like Vodafone, Sprint, T-Mobile, Acer, HTC, Samsung, Sony
Mobile, Intel, ST Ericsson, eBay, Accenture, are some of the
members of the alliance. Besides the core components open
sourced by Google in 2007, Android also includes other open
source projects, the majority of which were in existence before
the Android project.

The outline of this paper is as follows.

In Section II, the research method is further defined.
Section III presents the obtained results, while Section IV
discusses and analyses the obtained results in some more
detail. Finally, conclusions are drawn in Section V.

Fig. 1. A Three Actor Network

II. RESEARCH APPROACH

A. Introduction

The study is conducted as a case study [7]. The investigated
case is the committers’ network structure of the Android
OSP. The study is exploratory with the overall objective to
understand how the community participants collaborate in
development of the software through the Android OSS process.
In order to obtain study data, source code change log data
was extracted for each file within the Android repository, and
loaded into a database to simplify data manipulation process
which identified all pairs of authors that modified the same file.
For each identified co-authorship pair, weight and direction of
the relationship was calculated. Finally, this data was loaded
into the Gephi [8] software for network visualization and
analysis.

A study by Luis et al. [3] has shown how social network
analysis methodologies can be used to study OSS projects in
order to characterize the projects’ evolution over time as well
as the projects’ structure. Affiliation networks are a special
type of social network where two distinct sets of actors are
related, e.g., a committer network relates a set of committers
to a set of changed source code modules. Hence, there exists a
link between two committers when they have changed a same
module. An actor or a network node is referred to as a vertex
and the links between the vertices are called edges as shown
in Figure 1.

In this study we propose an approach for studying com-
mitters’ networks. In Luis et al. [3] the proposed methodology
establishes links between the committers, where the weight
of the link or the edge is calculated as being the number of
commits performed by committers to all common modules,
i.e. the degree of relationship. The definition of the common
module differs between projects, but usually corresponds to
the top level directories of a source code repository. In study
by Jermakovics et al. [9] weights are based on the number of
files users have modified together, i.e. user similarity.

According to Borgatti and Halgin [10] an important factor
to consider when studying the strength of the co-affiliation

978-1-4799-5795-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SEAA.2014.50

25

among an event’s participants is the size of the event. The
research suggests that one of the ways to normalize the
strength of a co-affiliation between event participants is to
weight participation relative to the size of event. In the studied
context, the size of the event is the total number of changes
made to same file. Then, the strength of co-affiliation among
participants relative to the size of event can be expressed
as the number of file changes performed by each participant
relative to the total number of the changes performed on the
file by all participants. For example, if two companies, A
and B, make changes to the same file, where company A
makes only a few changes while company B makes a majority
of the changes, then the influence of A over B is much
smaller than the influence of B over A. Hangal et. al [11] also
examine asymmetric influences of nodes through a friendship
example and infers weights on friendship relationships. Hence,
we propose a new approach to study committer networks as
weighted digraphs as shown in Figure 2. The figure shows
weights of the edges for committers associated with companies
A, B, and C who have changed the same source file 5, 10, and
15 times, respectively. The edge weight is calculated as the
number of the committers’ changes on a file relative to the
total number of changes for the file, which in this case is 30.
Thus, the committer A infers a weighted influence of 1/6, B
of 1/3, and C of 1/2 to the files’s co-committers.

Toivonen [12] argues the importance of strengths of edge
ties when modeling social structure and dynamics of social
networks. We argue that inferring the edge weight relative to
the size of the event provides a more accurate social network
structure compared to the one suggested by Luis et al. [3],
which does not take into account the relative size of an event.
For example, if only a degree of relationship is considered
in the above example for the committers A, B, and C for,
e.g., the total number of files they changed together, then the
edge weights between the three committers would be the same.
This would mean that the strength of co-affiliation between
A, B, and C is the same relative to the source file change
event, which is clearly not the case. While this is a simple and
trivial example, in a context of a large network, with many
committers, where, e.g, a subgroup of committers performs a
large number of changes, computing edge weights relative to
the number of all changes performed on a file is important in
order to accurately assess the strength of a relationship. This
is more so as the data on committers, corresponding edges,
and their weights are building elements of a network structure,
based on which other network metrics are derived.

In this study, the weight of the edge between two partic-
ipants is calculated on a file level. Affiliation networks link
actors into a social network by virtue of participants attending
a specific event. In the context of committer network analysis
we define the event as performing modifications on a specific
source code file. Hence, for a set of actors V = {v1, v2, ..., vk}
and events U = {u1, u2, ..., um} we define a weight W of an
edge between an actor vi and all other actors that participate
in the event ut as:

W (vi, vj , ut) =
X(vi,ut)∑k

c=1
X(vc,ut)

where X(vi, ut) denotes the number of times an ac-
tor/committer vi made changes to the file, i.e., participated
in the event ut.

Fig. 2. A Weighted Three Actor Network for Modification of One Source
Code File

This means that the weight of the edge W (vi, vj) for all
events vi and vj attended together equals:

W (vi, vj) =
∑m

t=1 W (vi, vj , ut)

In order to obtain committer data on the source code
changes, Android project source code repository was down-
loaded in November 2012 from the Android project web
site [13]. Change log records, with information on authors
and change dates for all Android source code files were
extracted and loaded into a database. The social network
data on network nodes/committers, edges, and associated edge
weights and labels was analyzed using the Gephi software for
social network analysis [8]. The labels correspond to the main
subdirectories under the Android source code tree, as displayed
in Table ??. The Gephi software was used to calculate relevant
social network metrics which are discussed in more detail in
Section 2.4 as well as to generate a visual representation of the
committers’ networks. Besides analyzing committer network
for the entire repository, we also analyze two additional distinct
committer sub-networks. Three committers’ subnetworks are
constructed:

1) External committers network which includes commit-
ters that changed files located under the external top
subdirectory.

2) Core committers network which includes committers
that changed files located under all top subdirectories
excluding the external subdirectory.

3) The entire committers network which includes com-
mitters that changed files located under both, the core
and the external subdirectories.

B. Research questions

The following research questions were investigated during
the research:

1) What are the characteristics of the committers’ net-
works for each set of the Android project source
files: the core, the external, and combined core and
external?

2) How can a company utilize network analysis to study
a development community?

For research question 1, the focus is an assessment of
the three distinct network structures, the core components
committer network structure, the external committer network
structure, and the combined core and the external committer
network structure. Metrics on network influence, clustering,
centrality, existence of sub-communities, and network density
are presented and discussed.

26

For research question 2, we analyze the results of research
question 1 from the perspective of a company planning to
develop software through Android or a similar OSP.

C. Investigated software

A program that parses trough all source files located under
the Android OSP subdirectories was created and run in order
to collect information on all the changes made to all the source
files in terms of authors and change dates. The extracted data
was loaded into a relational database to simplify manual data
validation and to provide a flexible way to create different input
formats to the Gephi [8] social network analysis software. All
committers were grouped based on a company affiliation. The
affiliation is determined based on committer’s e-mail domain
suffix. In case email data was not provided, committers’ indi-
vidual names are used and no company affiliation is implied.
All of the contributions made by the author named “Initial
Android Open Source Project Contribution was excluded from
the analysis, as these contributions were not developed under
the Android OSS community process, but internally by Google
before the project was initially open sourced. The Gephi data
records are of the form “source, target, edge weight, edge label.
If we consider the earlier example depicted in Figure 2, a
sample record would look like “A, B, 1/6, the changed source
file’s top subdirectory.

D. Metrics

The following metrics were measured for the three com-
mitter networks:

• Weighted average in-degree WAID and weighted av-
erage out-degree WAOD of a vertex.

• Betweenness centrality BC, closeness centrality CC,
and eigenvector centrality EVC of a vertex.

• Average Clustering Coefficient ACC of a vertex.

• Modularity MC of a network.

• Number of MCN of a network.

• Graph density GD of a network.

Weighted degree of a vertex denotes degree of relationship
of the vertex with its direct neighborhood. It is calculated as
the sum of weights of all edges connected to the vertex. Since
the analyzed network is weighted digraph, there exist two types
of edges; the edges originating from a vertex, or the out degree
(WAOD), and the edges pointing to a vertex, or the in-degree
(WAID). In the context of committer network analysis, the
out degree can be interpreted as the measure of collaboration
strength or influence of the committer on committers in its
direct neighborhood.

Betweenness centrality index (BC) is the number of short-
est paths that traverse through a vertex and it can be interpreted
as a measure of importance of the vertex in a graph. The higher
betweenness centrality index of a vertex, the more important
the vertex is.

Closeness centrality CC indicates how close on average
a vertex is to all other vertices. A high value of the distance
centrality index identifies vertices that are well related.

Eigenvector centrality EV C metric measures the influence
of a vertex on a network by assigning scores to all vertices in
the network.

textitAverage clustering coefficient ACC of a vertex shows
the tendency of the network to form cliques or isolated groups.

Modularity of a network MC identifies the sub-
communities within the network with densely connected ver-
tices. The value of modularity is calculated as a difference
in fraction of edges that fall into the sub-communities and a
fraction of edges that could be found in the sub-communities
if the edges were distributed at random per Blondel et. al [14].
In the context of the committer network study, the modularity
class is used to identify committer sub-networks with higher
degree of collaboration.

Graph density index GD measures how close the network
is to being complete, i.e., that there exist edges between all
the vertexes in the network. A value of 1 for the graph density
index indicates a fully complete or connected network.

E. Analysis procedure

Analysis with respect to research question 1 was conducted
by calculating the WAID, WAOD, BC, CC, EV C, ACC,
MC, GD on the core, external, and combined core and ex-
ternal Android OSP source code tree. For research question 2,
the presented network structure data in question 1 is analyzed
from a business/company perspective.

F. Validity

In this section the validity of the research is analyzed with
respect to the types of validity threats presented, for example,
in [7].

Construct validity: The construct validity is related to the
relationship between the concepts and theories behind the
experiment and what is measured and affected. The subset
of metrics from the network theory used in this research has
been accepted and validated in other studies within the filed
of OSP repositories and mailing archive studies. This means
that the risk of using metrics that do not represent the concept
of social network structure is lowered.

Conclusion validity: The conclusion validity is concerned
with the possibility to draw correct conclusions regarding
the relationship between treatments and the outcome of an
experiment. The interpretation of the metrics is grounded in
the widely accepted network theory and the field of social
network analysis.

Internal validity: The internal validity is concerned with
factors that may affect the dependent variables without the re-
searcher’s knowledge. The data extracted from the repositories
was examined and validated manually through sampling. The
approach used in constructing committers network is grounded
on network theory concepts applied in other disciplines.

External validity: The external validity is related to the
ability to generalize the results of the experiments. The studied
software is a relevant example of a successful industry led
OSP as the project includes leading global companies from
the mobile eco system.

27

TABLE I. SUMMARY OF THE COMMITTERS’ NETWORKS MEASURES

Metric Core External Core and External

ACC 0.782 0.791 0.799

MC 0.0009 0.356 0.43

MCN 4 6 7

GD 0.058 0.104 0.055

III. RESULTS

A. Research question 1: What are the characteristics of the
Android committers’ networks?

This section provides an assessment of the three distinct
network structures, the core components committers’ network
structure, the external committers’ network structure, and the
combined core committer’s and the external network structure.

The core committers’ network has a total of 250 vertices
and 3606 edges, which in this case means that committers
have 250 distinct affiliations and there are 1803 distinct com-
mitter co-authorship pairs. Since the network is modeled as
a weighted digraph, the edges are bi-directional. The external
committers’ network has 329 vertices and 11196 edges, while
the combined core and external committers’ network has 513
vertices and 14484 edges.

Table I shows ACC, MC, MCN , and GD for the three
studied committer network structures. The average clustering
coefficients for the three networks show that networks have a
high tendency to form cliques.

The identified number of closely related sub-communities
MCN for the core committer network is 4. However, the
MC value of 0.0009 indicates that a probability of such sub-
communities occurring at random is very high. Hence, the
identified potential sub-communities for the core committer
network should be disregarded since likelihood of their ex-
istence is not significant. The number of sub-communities
identified within the external committer network is 6 with
the MC value of 0.356 indicating that the likelihood of the
existence of the 6 subnetworks is significant. The number
of identified sub communities for the combined, external
and core committers’ networks is 7, with the MC value of
0.43 indicating that the likelihood of existence of the sub-
communities is significant.

The graph density metric GD for the core, external, and
combined core and external committer networks is 0.058,
0.104, and 0.055, respectively. The value of 1 for GD in-
dicates that all the components within the network are highly
connected. Hence, all three types of the committers’ network
showing low graph density values indicate that the committers’
networks are weakly connected. The high clustering coefficient
shows that even though many edges between the committers
are absent, committers in a direct neighborhood of a committer
are well linked.

The WAOD and WAID metrics indicate that for the en-
tire Android source code base Google has the highest strength
of co-affiliation with members in its direct neighborhood.
However, in the external committers’ network, Apple has the
highest strength of co-affiliation with the members in its direct
neighborhood. Hence, the metrics in summery show:

• Android core committers network: The high average
clustering coefficient and low graph density indicate

that committers in a direct neighborhood of a commit-
ter are well linked. The majority, i.e., 40% and 50% of
shortest paths between two committers within the core
committer network pass trough committers associated
with Google.com and Android.com email addresses,
respectively.

• Android external committers network: The num-
ber of sub-communities identified within the exter-
nal committer network is 6 with the MC value of
0.356 indicating that likelihood of the existence of
the 6 subnetworks is significant. The EVC values
for external committers’ network is balanced among
the top 30 committers. The BC value is highest for
the committers associated with the google.com ad-
dress, followed by the commuters associated with the
gmail.com, debian.org, nondot.org, and applec.com.
Committers associated with the apple.com have the
highest influence or collaboration strength.

• Android core and external network: The number
of identified sub communities for the combined, ex-
ternal and internal committers’ networks is 7, with
the MC value of 0.43 indicating that the likelihood
of the existence of the sub-communities is significant.
Committers affiliated with the Google email address
have the highest value of WAOD. Apple has some 30%
lower value of WAOD, followed by committers asso-
ciated with gmail.com, nondot.org, and android.com.
Values for CC and EVC are balanced between the top
20 committers, while the BC values indicate that some
40% of the shortest paths traverse through committers
associated with a google.com, followed by gmail.com
with some 20% of the shortest paths, and intel.com
with some 2% of the shortest paths.

Based on the results of the analysis, the most influential
committers with respect to the strength of collaboration are
committers affiliated with google.com and apple.com. Com-
mitters affiliated with google.com are also the most influential
for the core and combined committers’ networks, while the
committers affiliated with apple.com are the most influential
in the external committers’ network. The three committers’
networks have low GD values, indicating that the committers
are not well connected. The external committers network,
composed of over 150 different OSPs has a twice as high
value for the GD metric as for the Android core components
network. While the network centrality metrics are balanced
between the top 20 committers, they decrease sharply for
the other project committers. Among the 20 committers with
highest WAOD and WAID measures only three are found
in both the core committers’ network and the external com-
mitters’ network. The three are google.com, android.com, and
gmail.com affiliated committers. Among the 20 committers
with the highest centrality measures, only two can be observed
in both the core and the external committers’ networks. The
two are gmail.com and google.com affiliated committers.

B. Research question 2: How can a company utilize network
analysis to study a development community?

Based on the results presented for research question 1,
the Android OSP exhibits characteristics of a highly central-
ized OSP, where committers with affiliations to google.com,

28

gmail.com, android.com, and apple.com have the highest level
of influence. The Android committers’ networks have low
graph densities, i.e. low connectedness of committers, indi-
cating low cross-collaboration among committers.

From a perspective of a company that is planning to partici-
pate or participates in Android or a similar OSP this means that
it should take into consideration that OSS product development
tends to be highly influenced by one company. This might
indicate that the company planning to incorporate the Android
into its product will need to work closely with Google to ensure
that the changes it needs to see implemented in the source code
base are included in a future OSS product release. Google has
built different sales models around the Android, primarily the
GooglePlay store, the application market for Android devices,
AdMob platform, and Web search. Hence, it is in the Google’s
interest to have the Android used and distributed on as many
mobile devices as possible. However, the company should be
aware that sales and marketing models change, and different
alliances form. In order to influence and lead a large open
source project, a company controlling the project development
usually has a large development effort dedicated to the project.
In case a company is no longer able to support the development
it is possible that some other company, or a group of companies
takes the lead. Hence, it is possible that the new leader takes
the open source project in a direction that might be unfavorable
to other project participants.

IV. DISCUSSION

Based on the social network structure analysis results for
Android committers’s networks, it is evident that Google has
the highest degree of influence and centrality. This shows how
a large company with significant resources can create a large
scale software products using other OSS components. In a
company sponsored open source project the company invests a
large development effort into the OSS product and there exists
a possibility that the company might not be able to maintain
the high level of development commitment. This possibility
would also mean uncertainty for the future of the OSS product
development, and, if realized, it can bring shifts in committers’
influence on the project. This can create uncertainty on the
future of the OSS product development, an important factor
that should be considered by companies planning to join
similar company sponsored projects. A company might decide
to also closed source and license the open source product.
Such situation can then create a vendor lock-in effect, which
contradicts a generally accepted notion of an OSS software
product being free from vendor lock-in, i.e., users of OSS
being less dependent on a software producer.

For any company planning to join an OSP or base its
product around an OSP, there is a value in understanding the
underlying social structure, especially in terms of the most
influential community members, a level of cross-collaboration
among the committers, and the existence of subgroups.

V. CONCLUSION

The conducted analysis have shown that Google has the
major influence on the Android OSP. While it is favorable
to use an OSS product as a commodity software, and thus
decrease development costs by focusing available resources on

developing differentiating parts of a product, at the same time
this can raise many uncertainties. The future of OSS product
whose development is highly sponsored and influenced by one
company can come under the influence of market conditions
the company finds itself in. This seems to go against the nature
of OSS, which among other characteristics includes protection
from vendor lock-in, i.e., high dependance of companies using
Android on the Google.

More research is needed to understand and properly catego-
rize different OSPs in a way that would help the industry better
understand own strategic position in a context of using an OSP
to build business model. The research approach proposed in
this study can be used as one way of studying a committer’s
network structure of a software development community.

ACKNOWLEDGMENT

This work was funded by the Industrial Excellence Cen-
ter EASE - Embedded Applications Software Engineering,
(http://ease.cs.lth.se)

REFERENCES

[1] M. Höst and A. Oručević-Alagić, “A systematic review of research on
open source software in commercial software product development,”
Information & Software Technology, vol. 53, no. 6, pp. 616–624, 2011.

[2] E. S. Raymond, The Cathedral and the Baazar. O’Reilly Media, Inc.,
2001.

[3] L. López-Fernández, G. Robles, J. M. González-Barahona, and I. Her-
raiz, “Applying social network analysis techniques to community-
driven libre software projects,” International Journal of Information
Technology and Web Engineering, vol. 1, no. 3, pp. 27–48, 2006.

[4] J. Howison, K. Inoue, and K. Crowston, “Social dynamics of free
and open source team communications,” in Open Source Systems, IFIP
Working Group 2.13 Foundation on Open Source Software, 2006, pp.
319–330.

[5] AndroidCorp, “Google buys android for its mobile arsenal,”
http://www.businessweek.com/stories/2005-08-16/google-buys-android-
for-its-mobile-arsenal, 2005.

[6] AndroidOS, “Breaking: Google announces android and open handset al-
liance,” http://techcrunch.com/2007/11/05/breaking-google-announces-
android-and-open-handset-alliance/, 2007.

[7] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, pp. 131–164, 2008.

[8] Gephi, “Open source software for exploring and manipulating net-
works,” https://gephi.org, 2013.

[9] A. Jermakovics, A. Sillitti, and G. Succi, “Exploring collaboration
networks in open-source projects,” in OSS, 2013, pp. 97–108.

[10] S. P. Borgatti and D. S. Halgin, “On network theory,” Organization
Science, vol. 22, no. 5, pp. 1168–1181, 2011.

[11] S. Hangal, D. MacLean, M. S. Lam, and J. Heer, “All friends are not
equal: Using weights in social graphs to improve search,” SNAKDD-
2010: 4th SIGKDD Workshop on Social Network Mining and Analysis,
ACM, 2010.

[12] R. Toivonen, J. M. Kumpula, J. Sarmaki, J. P. Onella, J. Kertesz, and
K. Kaski, “The role of edge weights in social networks: modeling
structure and dynamics,” Proc. International Society for Optics and
Photonics, SPIE, vol. 6601, 2007.

[13] Google Inc, “Android open source software project,”
http://www.android.com/, April 2013.

[14] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large network,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 10, p. P100, 2008.

29

